Page Stream Segmentation with Convolutional Neural Nets Combining Textual and Visual Features

نویسندگان

  • Gregor Wiedemann
  • Gerhard Heyer
چکیده

In recent years, (retro-)digitizing paper-based files became a major undertaking for private and public archives as well as an important task in electronic mailroom applications. As a first step, the workflow involves scanning and Optical Character Recognition (OCR) of documents. Preservation of document contexts of single page scans is a major requirement in this context. To facilitate workflows involving very large amounts of paper scans, page stream segmentation (PSS) is the task to automatically separate a stream of scanned images into multi-page documents. In a digitization project together with a German federal archive, we developed a novel approach based on convolutional neural networks (CNN) combining image and text features to achieve optimal document separation results. Evaluation shows that our PSS architecture achieves an accuracy up to 93 % which can be regarded as a new state-of-the-art for this task.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

Assembling Deep Neural Networks for Medical Compound Figure Detection

Compound figure detection on figures and associated captions is the first step to making medical figures from biomedical literature available for further analysis. The performance of traditional methods is limited to the choice of hand-engineering features and prior domain knowledge. We train multiple convolutional neural networks (CNNs), long short-term memory (LSTM) networks, and gated recurr...

متن کامل

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

Integrating Scene Text and Visual Appearance for Fine-Grained Image Classification with Convolutional Neural Networks

Text in natural images contains rich semantics that are often highly relevant to objects or scene. In this paper, we focus on the problem of fully exploiting scene text for visual understanding. The main idea is combining word representations and deep visual features into a globally trainable deep convolutional neural network. First, the recognized words are obtained by a scene text reading sys...

متن کامل

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1710.03006  شماره 

صفحات  -

تاریخ انتشار 2017